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A B S T R A C T

The implementation of an elastoviscoplastic three-dimensional model (EVP3D) with the finite difference method
is presented using the Flac3D analysis platform. This numerical model allows the time-dependent stress-strain
behavior of soil to be studied while incorporating its viscous characteristics. An algorithm for solving the
constitutive equations is developed and programmed using the centered finite difference method varying in time.

The historical case of the construction of Tarsuit Island in the Beaufort Sea in the Arctic Ocean is studied to
calibrate and validate the model. A finite difference model that represents the construction stages is developed,
and the short- and long-term behaviors are obtained. The model was calibrated and validated with the data
record from an electric piezometer that was installed in the foundation of the artificial island, and the results of
the algorithm are compared with the recorded data. The results are satisfactory and comparable to the mea-
surements that were recorded for a year on the island, which demonstrates the applicability and validity of the
model and its constitutive hypotheses.

1. Introduction

Traditional behavior models that have been developed for soft soils
have mainly focused on the elasto-plastic component and neglected the
viscous component. According to several researchers (e.g.,
[5,3,21,11,13]), in compressible soils such as clays, the deformation
over time has a strong influence on the stress-strain behavior of soils;
therefore, ignoring this effect can lead to unrealistic analysis. Some
authors (e.g. Mesri (1975), Wehnert and Neher [23], Ovando [16],
Gonzalez et al. [10]) have been reported evidence of elastoviscoplastic
behavior of highly compressible clays.

The first elastoviscoplastic models were presented by Bjerrum [3],
Adachi and Oka (1982), Leroueil et al. [13], Borja and Kavazanjian
(1985) and Yin and Graham [25], and they used different approaches
for determining the time-dependent stress-strain behavior. This study
involves the development of the elastoviscoplastic model in three di-
mensions (EVP3D) that was proposed by Yin and Graham [28,29],
which began with the one-dimensional model formulated by those
authors in 1994 and 1996.

The EVP model referred to in this article is based on Perzyna's
theory of viscoplasticity (1963) [17], the concept of instantaneous and
delayed compression that was proposed by Bjerrum [3] and a new
concept called the equivalent timeline, which represents the creep be-
havior of soil under the application of a constant load [26,27] and is

considered to be an extension of the Modified Cam Clay model that was
defined by Roscoe and Burland [18]. The model was initially validated
through triaxial tests on soil samples made with a mixture of Sand and
Bentonite [28,29] getting good approximations between the numerical
model and the laboratory test results.

In this study, we adopt the model proposed by [28,29] and the
approach for generating a model coupled with the three-dimensional
consolidation model proposed by Biot [2] to obtain the equations that
relate the increase of excess pore pressure with the increasing volu-
metric deformations obtained from the EVP model [28,29]. Finally, the
equations are solved using a finite difference scheme. Each of the
constitutive equations from the coupled model is programmed in the
Flac 3D platform to take advantage of the graphical interface and the
storage capacity in addition to the constitutive models that have been
programmed.

2. Elastoviscoplastic model in three dimensions (EVP3D)

The EVP model, which was developed by Yin and Graham [28,29],
is a model of soil behavior that involves two important aspects: the first
is related to elastic behavior under a limited range of stresses, and the
second is inelastic behavior that depends on the stress trajectories and
time. Traditional geotechnical models are plastic models that do not
include the influence of time; as such, they mainly depend on the
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trajectories of the stresses to which the soil is subjected. However, some
soils continue to deform when they are subjected to a constant stress
state, which clearly shows that there is an additional component that
many researchers attribute to the viscous properties of the material. The
model used in this study involves these three aspects, which allows a
greater approximation of the observed and measured soil behaviors.
The model used in this study is an extension of the unidimensional
model that was proposed by [26], which is based on the theory of one-
dimensional consolidation under an isotropic state of stress. The de-
velopment of the model requires concepts such as compressibility and
soil deformability based on the approach proposed by Bjerrum [3], the
classical plasticity theory from the viscoplasticity theory developed by
Perzyna [17] and the Modified Cam Clay constitutive model that was
proposed by Roscoe and Burland [18].

Numerous investigations have focused on one-dimensional analyses
based on odometer deformation tests (e.g., [3,13,25,26]). However, Yin
and Graham [28,29] extended the concept to three dimensions to de-
termine the time-dependent stress-strain behavior of soils under triaxial
and general states of stress. It is worth mentioned, that the study of
engineering problems associated with tunnels, shafts, pipe jacking
among others, requires tridimensional time-dependent stress-strain
analyses to adequately represent soil behavior and its effects on such
structures.

In addition to considering the concepts described above, the elas-
toviscoplastic model [28,29] modifies the timeline concept that was
established by Bjerrum [3], which defines new concepts such as an
equivalent timeline, instant timeline, and reference timeline. In addi-
tion, it considers an elliptical creep surface and the failure criterion of
Von Mises (1913); thus, this model can be considered an extension of
the Modified Cam Clay model of Roscoe and Burland [18].

The one dimensional elastoviscoplastic model that was proposed by
Yin and Graham [26] is the basis of the EVP3D model of Yin and
Graham [28,29]. The main difference between this model and the
three-dimensional model is that the latter is given in terms of the iso-
tropic stress (p′) and not in terms of the effective vertical stress (σv),
which differs substantially from the one-dimensional consolidation
model.

Concepts such as the equivalent timeline, instant timeline and re-
ference timeline, which are all represented in the ′ε p:v plane, are taken
from the one-dimensional EVP model [26,27]. The equivalent timeline
(te) is a parameter that allows the increase in soil deformation (ε )̇ to be
quantified (Fig. 1):

The volumetric strain at any point in Fig. 1 at a stress ′pm and for a
known equivalent time te is defined as:
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Based on these concepts, the general equation of the EVP 1D model for

an isotropic stress state (Eq. (2)) is defined in terms of the total strain
increment as the sum of the increase in elastic strain and the increase in
creep strain:
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The EVP3D model [28,29] is based on several concepts, including the
effect of time on the compressibility that was proposed by Bjerrum [3],
the concept of soil creep that was proposed by Tresca (1869), Von Mises
(1913), and Graham, Noonan and Lew (1983), the definitions of in-
stantaneous and delayed deformations that were proposed by Bjerrum
[3], Perzyna [17], the Modified Cam Clay model by Roscoe and Burland
[18], and the one-dimensional elastoviscoplastic model that was de-
veloped by Yin and Graham [26]. The different theories and concepts
allow a method to be defined to determine the total strain rate for
normally consolidated soft soils to slightly overconsolidated soils in
three-dimensional space.

According to the Modified Cam Clay model, the plastic potential g is
equal to the flow surface function f, which depends on the level of effort
and the history of soil hardening:
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where pm′ is the average effective isotropic stress at which the shear
stresses q are equal to zero. In a general stress state, the average ef-
fective stress is ′ = + +p σ σ σ( )/3xx yy zz , and the generalized deviatoric
stress =q S S(3/2 )ij ij

1/2 for a triaxial stress state is ′ = ′ + ′p σ σ( 2 )/31 3 and
= −q σ σ1 3.
In this model, a logarithmic function is adopted to describe the

creep behavior of the soil given that the strains approach infinity with
infinite time; this is acceptable for the design life of geotechnical con-
struction projects [28,29], which is considered to be greater than
50 years. According to the theory of viscoplasticity that was proposed
by Perzyna (1963) [17], the viscoplastic strain rate εi̇j

vp is calculated
based on the flow rule:
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where ϒ is related to the fluidity parameter, ϕ is a function of f, S is the
scale function and is related to the flow surface (Zienkiewicz and Cor-
meau, 1974; Adachi and Oka, 1982; [8]; Kutter and Santhialingman,
1992; Borja and Kavazanjian, 1985; Yin and Graham [28,29]), g is the
plastic potential function, and σij corresponds to the stress tensor.

The elastoviscoplastic model hypothesizes that the strain rate is
constant at the creep surface, and thus the scale function S of Eq. (4) is
derived. Considering a triaxial stress state, the following expressions are
obtained:
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where εv̇
vp is the volumetric viscoplastic strain rate, and εṡ

vp is the vis-
coplastic deviatoric strain rate.

If the stress state (p′, q) is known, the mean isotropic stress pm′ is
determined with Eq. (7), which expresses the soil consistency based on
the theory of viscoplasticity:

′ = ′ +
′

p p
q

p Mm

2

2 (7)

Yin and Graham [28,29] hypothesized in the formulation of the EVP3D
model that the volumetric viscoplastic strain rate is constant at the flow
surface and is equal to the rate of volumetric strain under isotropic
stress conditions ( = ′ = ′q p p0, m). Thus:

Fig. 1. Equivalent timeline, instant timeline, and reference timeline.
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and assuming that =ε ε̇ ̇v
vp

vm
vp , the scale function S is established, which is

determined by:
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Based on these concepts, Yin and Graham [28,29] defined the con-
stitutive equations of the elastoviscoplastic model in three dimensions
using the following equations:
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where Ke and Ge are the moduli for elastic component, that describe the
non-linear elastic behavior of soil. Ke is the elastic bulk modulus and
depends on the mean effective stress ′p , and Ge is the elastic shear
modulus and depends on Ke.

2.1. EVP3D model coupled with the general theory of three-dimensional
consolidation

Based on the general theory of three-dimensional consolidation [2],
Yin and Zhu (1999) transformed the EVP3D model into a coupled
model, from which we obtain a set of equations to predict the soil be-
havior with time.

From this coupled model, we propose the first equation for the
EVP3D model in terms of the excess pore pressure U:
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where k is a coefficient of permeability, γw is the volumetric weight of
water (9.8 kN/m3)

To solve the EVP3D model, it is necessary to determine the increase
in the volumetric isotropic strain εv̇m based on the equation of the EVP
1D model, which is similar to the law of hardening in the Cam Clay
model (Eq. (13)):
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where κ/V is an elastic parameter which represents the slope of the
instantaneous line, λ/V, εvmo

ep and pmo′ are elastic-plastic parameters, and
ψ/V and t0 are creep parameters

The remaining equations correspond to Eqs. (10) and (11):
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Eqs. (12)–(15) are the constitutive equations of the coupled EVP3D
model.

3. Numerical solution of the coupled EVP3D model in the Flac 3D
program

The explicit finite difference scheme is used to solve the first- and
second-order differential equations that make up the coupled EVP3D
model. Based on the initial and boundary conditions of the analyzed
problem, this scheme obtains the spatial (x, y, z) and temporal (t)

variations of the group of variables that describe their behavior. This
solution was incorporated into an algorithm that was developed in the
FISH programming language [12]. This algorithm allows the behavior
of continuous three-dimensional media that reach equilibrium and/or a
continuous plastic flow to be modeled.

3.1. Numerical solution of the EVP3D model using the centered finite
difference scheme

Eqs. (12)–(15) form a system of differential equations that can be
represented through an explicit finite difference scheme, which is pre-
sented in the following subsections.

The nomenclature used in the resulting equations when applying
the finite difference method is given below:

Ai j l
n
, , (16)

where A is the variable of interest, n represents the time step, i is the
step in the x axis, j is the step in the y axis, and l is the step in the z axis.
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3.2. Stability of the finite difference method

Because the solution scheme for the equations that describe the
EVP3D model is an explicit scheme, it is necessary to guarantee its
convergence and stability. The condition that relates the spatial varia-
tion over time is known as the Courant-Friedrichs-Lewy condition [7],
and it defines a critical value. Therefore, to obtain a numerical solution
to the second-order differential equation (Eq. (17)) that governs the
three-dimensional consolidation phenomenon in the EVP3D model, the
following condition must be satisfied:
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= ⩽C C t
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Δ
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where Cv is the consolidation coefficient (L2/T), tΔ is the time step (T),
and espacialΔ corresponds to the smallest dimension of the mesh in the
three spatial dimensions ( xΔ , yΔ , zΔ ). If this condition is fulfilled, the
spatial and temporal steps of the numerical modeling will be adequately
determined to guarantee the convergence of the explicit method [24].
These characteristics for the particular case of the analysis are discussed
in Section 4.

3.3. Mesh simplification

The centered finite difference scheme proposes the solution of the
problem of rectangular meshes. In the three-dimensional case, the re-
gion around each central node is formed by six neighbors ( +Ui j l1, , , −Ui j l1, , ,

+Ui j l, 1, , −Ui j l, 1, , +Ui j l, , 1, −Ui j l, , 1), two for each axis, and the pitch in each
direction must be the same (Fig. 2). Two schemes for the regular mesh
are presented in Fig. 2. In the first, the neighboring nodes are connected
to a particular node, whereas in the second, several elements are con-
nected to a particular node.

However, it is common for finite-difference algorithms to represent
complex geometries by discretizing the continuous medium using reg-
ular and irregular meshes (more than six neighbors connected to a
node) (Fig. 3). To avoid detracting from the applicability of the method

to complex or detailed geometries, it is necessary to transform irregular
meshes into regular meshes. Therefore, a mechanism was implemented
to transform irregular meshes into regular rectangular meshes using the
Inverse Distance Weighted Interpolation (IDW) method. The IDW
method is a deterministic method that is used for the multivariate in-
terpolation of a dispersed set of known data. The main hypothesis is
that every point in the data set of a continuous medium is related to the
entire data set but is influenced more by the closest points; the value of
a variable at a non-sampled point is the weighted average of known
values in its vicinity (Lu and Wong, 2008). This allows the values at
unknown points to be determined from the values n at a dispersed set of
known points.

The equations for IDW interpolation are as follows:

∑=
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U w Up
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n

i i
1 (22)

=
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=
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d
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i
α

i
n

i
α
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where Up is the point where the value is unknown, Ui represents the
values of the known points, n is the number of data points, di represents
the distance from the unknown point to each of the known points, and α
is a control parameter. According to Lu and Wong (2008), =α 2. Fig. 4
shows a schematic of the IDW interpolation method, which indicates

ljiU ,,

Fig. 2. Regular mesh for the three-dimensional finite difference solution.

Fig. 3. Regular and irregular meshes.
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that the value of each unknown or virtual node is determined from the
cloud of known nodes. In this way, a regular mesh is constructed, which
can be solved with the centered finite difference method.

3.4. Algorithm developed to implement the EVP3D model

Next, a general description of the algorithm that was developed for
the analysis of a three-dimensional continuous medium using the
EVP3D model is presented.

To determine the geometry of the model, the mesh is generated
following the mesh generation logic of the program used. The geometry
must be continuous, and the elements that make up the model must
have appropriate aspect ratios to enable convergence, stability, preci-
sion, and speed in the calculation.

The initial equilibrium conditions must be determined to establish
the geostatic (stress state) and hydrostatic (pore pressure) conditions at
the beginning of the stage to be evaluated.

The soil parameters necessary to execute the EVP3D model and the
time interval to be evaluated are presented in equations (17)–(20).

To simplify the mesh simplification process, the conversion of ir-
regular to regular meshes is performed by creating virtual nodes using

the IDW interpolation method.
During execution of the EVP model, the system of differential

equations that describe the EVP behavior model is solved using the
explicit finite difference scheme, which generates the stresses and
strains due to the application of external forces.

In Fig. 5, the flowchart for the EVP model code is represented.

4. Validation of the coupled EVP3D model

To calibrate the EVP model in a preliminary work Ossa [15] carried
out a comparison between EVP 1D model (which is the basis of the 3D
development), Terzaghi’s consolidation theory, and measured data
obtained from two load increments of a one dimensional consolidation
test performed on a specimen of Mexico clay (SS-21-05). Soil para-
meters used for both simulations are presented in Tables 1 and 2. Fig. 6
shows comparison results and indicate that EVP 1D consolidation set-
tlements predictions (S/Ho) are more reliable than those obtained using
1D conventional theory.

On the other hand, the historical case of the construction of Tarsuit
Island was used to verify and validate the results of the algorithm that is
implemented in the EVP3D model. This case has been studied by several

Fig. 4. Interpolation via the inverse weighted distance (IDW) method.
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researchers, such as Conlin et al. [6] and Yin and Zhu (1999).
Tarsuit Island is located in the Beaufort Sea in the Arctic Ocean

between Alaska and northern Canada. This site remains frozen for most

of the year and is considered to be the location of a significant subsea
oil reservoir, which has been explored since the 1960s. The island,
which is located 60 km off the Canadian coast, was built in 1981. It
consists of four sand-filled concrete caissons that rest on a subsea sand
berm, and it is 17.5 m high from the foundation to the crown of the
berm and 100m wide. A schematic cross-section of the island is pre-
sented in Fig. 7.

The sand berm lies on a soft to slightly rigid marine clay called Zone
1, which is on top of a rigid loamy clay called Zone 2. Zone 2 lies on top
of Zone 3, which is composed of frozen soils that are considered to be

Fig. 5. Flowchart programming EVP3D Model.

Table 1
Soil properties of specimen SS-21-05.

κ/vo λ/vo ψ/vo σzo′ (kPa) εzo′ to (min) k (cm/seg)

0.018 0.29 0.007 158 0 540 2.5E−08

Table 2
Parameters of unidimensional consolidation test of specimen SS-21-05.

Incr. EVP Terzaghi

Ho (m) εz(z,0) (%) σ′z(z,0) (kPa) u(i,0) = Δ σz (kPa) t (min) Ho (m) mv (m2/kN) cv (m2/min) Δσz (kPa) t (min)

1 0.0189 8.60 200 200 1500 0.0173 7.5E−04 1.5E−06 200 1500
2 0.0189 26.10 400 400 1500 0.0140 6.6E−04 5.8E−07 400 1500
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rigid and waterproof. Tarsuit Island was instrumented and monitored
by Weaver and Berzins (1983), who reported data that were measured
at the site until 1985. As part of the instrumentation, two months after
completion of construction, an electrical piezometer was installed in
Zone 1 two meters from the base of the foundation of the sand berm,
with which the evolution of the excess pressure was monitored for
480 days.

4.1. Properties of materials and calculation of initial parameters

The behavioral models for the materials of the island and founda-
tion are different. Linear elastic behavior was assumed for the sand
berm and Zone 2, and the EVP3D model was applied for Zone 1. The
properties of the materials were determined from data from the pie-
zometer, cone penetration tests (CPTs), index properties, aniso-
tropically consolidated non-drained triaxial tests and odometer tests
that were reported by Conlin et al. [6]. The properties of the materials
are presented in Tables 3 and 4. Based on the defined behavior model,
the values are consistent with those reported by Conlin et al. [6] and
Yin and Zhu (1999).

The permeability coefficient k of soils varies with the level of stress
and depends directly on the void ratio [22,1,19,20,4,9]. Using accurate
information about the permeability of the clay on which Tarsuit Island

was built, different permeability conditions were evaluated for this clay
stratum based on the ranges reported by Conlin et al. [6] and Yin and
Zhu (1999).

To solve the constitutive equations of the EVP3D model, it is ne-
cessary to calculate the slopes of the fault envelope (M) in compression
and of the moduli K and G according to the following equations:

=
′

− ′
M

senϕ
senϕ

6
(3 ) (24)

=K
p

κ V( / ) (25)

= −
+

G K v
ν

1.5 (1 2 )
(1 ) (26)

The parameters ′pmo and εvmo
ep define the point where λ (reference time

line) passes ( ′p ε,m v) in space [28,29], which is similar to the normal
isotropic compression line of the Modified Cam Clay model. The creep
parameters ψ V/ and to are involved in the EVP3D model. The parameter
ψ corresponds to the secondary consolidation coefficient. Based on the
EVP 1D model (Yin and Graham, 1990), ψ is approximated as

=ψ C /ln(10)αe . The values presented in Table 5 correspond to those
reported by Yin and Zhu (1999).

To calculate the initial mean effective stress, ′pmi and the initial
volumetric strain, εvmi, an overconsolidation ratio OCR=3 was con-
sidered for the clay from Zone 1 [6], and the following equations were
utilized:
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Fig. 6. Calibration 1D EVP model (a) Δσz = 200 kPa, (b) Δσz = 400 kPa.

Fig. 7. Schematic cross-section of Tarsuit Island.

Table 3
Properties of the EVP3D model (Zone 1).

Elevation γ′ e0 K0 κ/V λ/V φ′ ν
(m) (kN/m3)

−21 to −25 8 1.010 0.7 0.0065 0.060 29 0.45
−25 to −26 8 0.950 0.7 0.0056 0.058 29 0.45
−26 to −27 8 0.900 0.7 0.0047 0.052 29 0.45
−27 to −28 8 0.850 0.7 0.0038 0.047 29 0.45
−28 to −29 8 0.790 0.7 0.0028 0.044 29 0.45
−29 to −30 8 0.740 0.7 0.0017 0.037 29 0.45

Table 4
Properties of the linear elastic model (Zone 2 and berm).

Material γ′ E ν k
(kN/m3) (kPa) (m/s)

Zone 2 8 20,000 0.32 1.70E−09
Sand berm 8.1 2000 0.3 –
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4.2. Modeling methodology

The analysis considers the construction process of the island, which
lasted for 108 days. The steps proposed by Yin and Zhu (1999) are
considered. Stage 0 corresponds to the calculation of the initial stresses.
Stages 1 to 5, which have durations of 14 days per stage, correspond to
the construction of the sand berm. Stages 6 to 9, which last for a total of
38 days, correspond to the placement of the concrete caissons and the
formation of the sand core.

• Geometry and type of analysis

Yin and Zhu (1999) performed a two-dimensional axisymmetric
analysis. The algorithm was adapted to this analysis to compare with
their results. Fig. 8 shows the analysis model that was constructed in
Flac 3D. The variables of the model are in terms of the mean effective
stress (p′) and the deviatoric stress (q).

The lateral borders are considered to be impermeable and restrict
horizontal deformations; only vertical deformations are allowed. This
was done to avoid the influence of the lateral borders on the results of
the area of interest. The lower boundary of the model is considered to
be impermeable because this zone corresponds to frozen soils, and the
upper boundary is considered to be a draining boundary.

• Piezometric record

The record of the electric piezometer that was installed in the
foundation 60 days after construction of the island at a depth of 2m and
28m from the axis of symmetry was used to validate the results. Fig. 9
shows the piezometric record for a period of 485 days.

5. Presentation and analysis of results

The analysis of the stress distribution shows that the total increase
in load transmitted to the foundation is 330 kPa, which is equal to the
values reported by Conlin et al. [6] and Yin and Zhu (1999).

The variation in the excess pore pressure for different levels of mesh
discretization was examined. To corroborate the convergence of the

method, mesh geometries with 2m×2m, 1.5m×1.5m and
1m×1m elements were analyzed. Fig. 10 compares the results from
the three models at the same depth with the electric piezometer record.
The results demonstrate that as the size of the elements decreases, the
results become more consistent with the piezometric data. The
1m×1m model provides a value for the Courant condition that is
closest to the reference value; thus, these dimensions are adopted for
the subsequent analyses.

During the calibration stage, the EVP3D model was shown to be
sensitive to the permeability of the materials. It should be noted that for
soft clays, the permeability when the stress is in the preconsolidated
range is greater than the permeability in the normally consolidated
range because the effective stresses increase over time, and the void
ratio decreases (Taylor, 1961). Different authors have reported dif-
ferent permeability values, so it was necessary to perform an inverse
parametric analysis. Conlin et al. [6] reported permeability values on
the order of 3× 10−10 m/s from the surface to the depth of the pie-
zometer and 5× 10−10 m/s from the depth of the piezometer to the
lower boundary of the compressible stratum. Yin and Zhu (1999) re-
ported a range of permeabilities from 2×10−9 m/s to 5× 10−11 m/s
for the material in Zone 1.

Fig. 11 shows that using the permeability values proposed by Conlin
et al. [6], the response of the model differs from the values of the excess

Table 5
Parameters of the EVP3D model (Zone 1).

Elevation pm0′ εvmo
ep ψ/V t0 M

(m) (kPa) (day)

−21 to −25 1 0 0.006 1 1.16
−25 to −26 1 0 0.006 1 1.16
−26 to −27 1 0 0.005 1 1.16
−27 to −28 1 0 0.005 1 1.16
−28 to −29 1 0 0.005 1 1.16
−29 to −30 1 0 0.005 1 1.16

Fig. 8. Geometry of the two-dimensional model.
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pore pressure recorded by the piezometer. The minimum permeability
reported by Yin and Zhu (1999) gives values less than those of the
piezometric record, and the maximum permeability results in a better
approximation of the data.

The values adopted for the permeability (k) based on the parametric
analysis are presented in Table 6.

5.1. Excess pore pressure

Fig. 12 shows the variation of the excess pore pressure for an ana-
lysis period of 10 years. The variation in the excess pore pressure is
monitored at a depth equal to the location of the electric piezometer (2
m below the foundation of the island). Dissipation of the excess pore
pressure occurs during each stage of construction, but due to the short
duration of each stage, the dissipation is much smaller than the increase
in pore pressure at the beginning of the stage. At the end of construction
(108 days), the total stress remains constant over time (i.e., there is no
variation in the load), and dissipation of the excess pore pressure is
observed from this point. The calculated dissipation is a good approx-
imation of that obtained with the piezometric record.

The piezometer record for the first 100 days is characterized by an
increase in the excess pore pressure, this may be due to the smearing of
the soil surrounding the piezometer tip. It is important to note that in
the phase where greater pore pressure dissipation occurred (160 days
after completion of construction), and therefore greater deformations in
the ground, numerical results reflect a good approximation with the
field records. The greatest volumetric changes in the soil occur in this
phase of the dissipation process due to consolidation of the soil by the
load imposed by the embankment. Fig. 13 shows the predicted varia-
tion of the excess pore pressure using isochrones at different times (0
days, 120 days, 1 year, 5 years and 10 years) (see Figs. 14 and 15).

The results indicate that the greatest excess pore pressure occurs at
the center of the island, which is the area with the highest load con-
centrations due to the geometry of the island. The excess pore pressure
in the slope area decreases due to the decrease in the transmitted load.

The pore pressure dissipates faster at the periphery than at the center
because the excess pore pressure is lower and is located near the upper
drainage border. At the end of the analysis period (10 years), the
highest values of the excess pore pressure are located at the base of the
model near the center, and they approach 200 kPa.

Fig. 11. Effect of the variation of the permeability at piezometer Pz.

Table 6
Permeability coefficients.

Elevation k
(m) (m/s)

−21 to −25 2.00E−09
−25 to −26 2.00E−09
−26 to −27 5.00E−11
−27 to −28 5.00E−11
−28 to −29 5.00E−11
−29 to −30 5.00E−11
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Fig. 12. Comparison of the EVP model results with the piezometric record.
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5.2. Distribution of effective stresses over time

Fig. 16 shows the isochrones of the vertical effective stress, which
show that during the 120 days after the end of construction, the changes
in the effective stress are minimal to a depth of approximately 4m due
to the low dissipation of the pore pressure during this period. The
vertical effective stress at the base of the compressible stratum (be-
tween depths of 4.0 and 6.5m) does not change until the first year of
construction. From 5 to 10 years, the vertical effective stress increases
until it reaches 124 kPa at the base of Zone 1.

5.3. Vertical and horizontal displacements

The volumetric (εv) and deviatoric (εq) strains are calculated using
the constitutive equations of the EVP3D model, and the horizontal and
vertical deformations are then determined from the invariants of the

strain tensor [14]. The vertical and horizontal displacements in the
upper part of the compressible stratum (Zone 1) are calculated to de-
termine the settlements caused by the construction of the island at 5
and 10 years (Figs. 17 and 18).

The largest vertical displacements occur in the sand core, which
corresponds to the highest part of the island; the vertical displacement
reaches 0.4 m after 10 years. The vertical displacements decrease con-
siderably toward the edge of the island. The maximum horizontal dis-
placements are also located in the core area 36m from the axis of
symmetry and reach 0.13m after 10 years. These results are consistent
with those reported by Yin and Zhu (1999).

6. Conclusions

To solve the constitutive equations of the EVP3D model, a coupled
consolidation model was proposed and developed based on the general

Fig. 14. Excess pore pressure: (a) 0 days, (b) 120 days, (c) 1 year.
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Fig. 15. Excess pore pressure: (a) 5 years, (B) 10 years.
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theory of three-dimensional consolidation proposed by Biot [2]. From
this model, expressions were obtained to determine the variations of the
excess pore pressure, stress state, and volumetric and shear strains of
the soil over time.

The programming of the coupled EVP3D model is a new tool for
analysis using the finite difference method. Therefore, this model pro-
vides an alternative technique for modeling soils that are subject to
consolidation processes.

The software Flac3D [12] was used to develop the model using the
FISH programming language and the software’s programming logic,
graphical interface and data storage.

The calibration of the EVP3D program with the case study demon-
strated the high sensitivity of the results to the permeabilities used in
the consolidation models. Therefore, in future analyses of other pro-
blems, appropriate permeabilities must be utilized to ensure that the
results accurately represent the behavior of the soil.

Analyses using different levels of mesh discretization were per-
formed in this study. The results showed that the accuracy of the results
varies considerably depending on the level of discretization of the
problem. In the case study, models with less refined grids provided
excess pore pressures that were not consistent with the values obtained
from the piezometric data.

The response of the model using the developed algorithm accurately
approximated the piezometer data during the dissipation of the pore
pressure (i.e., starting 160 days after the construction of the island). The
greatest volumetric changes occurred in the soil during this phase due
to the increase in the load caused by the construction of the embank-
ment.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.compgeo.2017.11.011.
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